A Bi-Hamiltonian Formulation for Triangular Systems by Perturbations
نویسنده
چکیده
A bi-Hamiltonian formulation is proposed for triangular systems resulted by perturbations around solutions, from which infinitely many symmetries and conserved functionals of triangular systems can be explicitly constructed, provided that one operator of the Hamiltonian pair is invertible. Through our formulation, four examples of triangular systems are exhibited, which also show that bi-Hamiltonian systems in both lower dimensions and higher dimensions are many and varied. Two of four examples give local 2 + 1 dimensional bi-Hamiltonian systems and illustrate that multi-scale perturbations can lead to higher-dimensional bi-Hamiltonian systems.
منابع مشابه
A Class of Coupled KdV Systems and Their Bi-Hamiltonian Formulation
Bi-Hamiltonian formulation is significant for investigating integrable properties of nonlinear systems of differential equations [1] [2] [3]. Many mathematical and physical systems have been found to possess such kind of bi-Hamiltonian formulation. There are two important problems related to bi-Hamiltonian theory. The one is which kind of systems can possess bi-Hamiltonian formulation and the o...
متن کاملBi–Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
We discuss from a bi-Hamiltonian point of view the Hamilton–Jacobi separability of a few dynamical systems. They are shown to admit, in their natural phase space, a quasi–bi– Hamiltonian formulation of Pfaffian type. This property allows us to straightforwardly recover a set of separation variables for the corresponding Hamilton–Jacobi equation.
متن کاملOn Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws I: Quasi-Triviality of Bi-Hamiltonian Perturbations
We study the general structure of formal perturbative solutions to the Hamiltonian perturbations of spatially one-dimensional systems of hyperbolic PDEs vt + [φ(v)]x = 0. Under certain genericity assumptions it is proved that any bi-Hamiltonian perturbation can be eliminated in all orders of the perturbative expansion by a change of coordinates on the infinite jet space depending rationally on ...
متن کاملv 1 1 0 N ov 1 99 8 ON A CLASS OF DYNAMICAL SYSTEMS BOTH QUASI - BI - HAMILTONIAN AND BI - HAMILTONIAN
It is shown that a class of dynamical systems (encompassing the one recently considered by F. Calogero in [1]) is both quasi-bi-Hamiltonian and bi-Hamiltonian. The first formulation entails the separability of these systems; the second one is obtained trough a non canonical map whose form is directly suggested by the associated Nijenhuis tensor.
متن کاملRecursive properties of Dirac and Metriplectic Dirac brackets with Applications
In this article, we prove that Dirac brackets for Hamiltonian and non-Hamiltonian constrained systems can be derived recursively. We then study the applicability of that formulation in analysis of some interesting physical models. Particular attention is paid to feasibility of implementation code for Dirac brackets in Computer Algebra System and analytical techniques for inversion of triangular...
متن کامل